Egy HR-algoritmus képes megmondani, milyen gyakran fogsz munkát váltani

Nincsen túlélhető és fenntartható jövőnk tudomány nélkül, ahogy nekünk sincsen nélkületek. Támogasd a Qubit munkáját!

A koronavírus-járvány kezdete óta számos vállalat fordult okos algoritmusokhoz, hogy kiderítse, ki a legjobb jelölt a nyitott pozíciókra. Leggyakrabban arckereső programokat, játékokat, kvízeket és más vizuális vagy nyelvi mintázatokat vizsgáló szoftvereket vetnek be, hogy eldöntsék, ki kerül be az interjúkörbe. 

A jelek szerint a 2013 októberében alapított, ausztrál PredictiveHire nevű cég ennél is sokkal tovább ment: olyan gépi tanuláson alapuló algoritmust fejlesztett, amellyel felmérhető, hogy egy adott jelölt esetén mekkora a gyakori munkahelyváltás valószínűsége – írta a héten az MIT Technology Review.

Barbara Hyman, a HR-cég ügyvezető igazgatója szerint ügyfeleik olyan munkáltatók, akiknek rengeteg jelentkezést kell feldolgozniuk, és egyebek mellett az ügyfélkiszolgálás, a kiskereskedelem, az értékesítés vagy az egészségügy területén aktívak. 

Első körben chatbot dönt a jelentkezőkről

Amikor valaki a HR-cégen keresztül jelentkezik állásra, először egy chatbotot kell „meggyőznie” értékeiről. Az algoritmus nyitott kérdések sorát teszi fel, és olyan személyiségjegyeket elemez, mint a kezdeményezőkészség, a belső motiváció vagy az ellenálló képesség. 

Sőt, az algoritmus a jövőben a gyakori munkahelyváltás valószínűségét – vagy ahogy a PredictiveHire honlapján reklámozza, a „menekülés kockázatát” – is vizsgálhatja, még teljesen pályakezdő jelöltek esetén is. A HR-cég legújabb tanulmányának fókuszában ugyanis egy olyan gépi tanuló algoritmus fejlesztése áll, amely kifejezetten ezt igyekszik előre megmondani. A kutatás keretében 45899 jelöltet vizsgáltak meg, akik korábban a PredictiveHire chatbotján keresztül válaszoltak a tapasztalataikról és helyzetmegítélő képességeikről szóló 5-7 nyitott kérdésre. 

Ezek olyan személyiségjegyekre kérdeztek rá, amelyek korábbi kutatások – például a PredictiveHire saját kutatása – alapján szoros összefüggésben lehetnek a gyakori munkahelyváltásokkal, például az új élmények iránti nagyobb nyitottság vagy a gyakorlatiasság hiánya. 

Algoritmusok a béremelés ellen

Nathan Newman, a New York-i John Jay College of Criminal Justice egyik egyetemi docense, aki 2017-ben arról írt tanulmányt, hogy a nagymintás adatelemzés a munkavállalók diszkriminációján felül hogyan használható a bérek letörésére, az MIT Technology Review-nak azt mondta, a PredictiveHire legutóbbi munkája 

az egyik legkártékonyabb módja a big data munkaügyi alkalmazásának. 

Ide tartoznak a gépi tanuláson alapuló, egyre népszerűbb személyiségtesztek is, amelyek azokat a potenciális munkavállalókat igyekeznek kiszűrni, akik nagyobb valószínűséggel támogatnák a szakszervezetekbe tömörülést, vagy hajlamosabbak béremelést kérni. Mindezt úgy, hogy az MIT Technology Review szerint a munkáltatók egyre jobban szemmel tartják dolgozóik e-mailjeit, online beszélgetéseit és minden olyan adatot, amelyből leszűrhetik, hogy az adott kolléga távozni készül-e, és kiszámolhatják, mi az a minimális béremelés, amellyel még adott esetben maradásra bírhatják. 

Az Uber algoritmus alapú menedzsment rendszerei állítólag úgy igyekeznek távol tartani a munkatársakat az irodáktól és a digitális helyszínektől, hogy még véletlenül se tudjanak szervezkedni és kollektíven jobb fizetést vagy bánásmódot követelni.

Kapcsolódó cikkek a Qubiten: